skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schwenk, Bailey A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Plastic litter is a globally pervasive pollutant. Storms are likely key drivers of plastic transport to oceans, but plastic transport during rising and falling limbs of storm hydrographs is rarely measured. Measurements of plastic movement throughout individual storms will improve watershed models of plastic dynamics. We used cameras to quantify macroplastic movement (i.e., particles > 5 mm) in rivers before, during, and after individual storms (N = 18) at 10 sites within three North American watersheds. Most storms showed no difference in macroplastic transport between rising and falling hydrograph limbs or evidence of hysteresis (transport rate range = 0–236 items/30 min). Total macroplastic exported during storm events was positively related to storm magnitude and was greatest at more urban sites. Thus, macroplastic transport during storms was driven by storm size and land use. The quantitative relationships between macroplastic movement and hydrology will improve discharge‐weighted calculations of macroplastic transport which can benefit modeling, monitoring, and mitigation efforts. Practitioner PointsMacroplastic particles (i.e, > 5 mm) are both retained in urban streams (e.g., in debris dams), and move downstream during baseflow and stormflow conditionsStorm flows are key periods of macroplastic transport: transport rates are higher on both rising and falling limbs of storm hydrographs relative to baseflow.The amount of macroplastics moving during storm flows is positively related to storm intensity.The predictive relationships generated between storm flow and macroplastic transport will improve estimates of annual export, and policies for macroplastic pollution reduction. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026