skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schwenk, Bailey A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Urban rivers are hypothesized to be major transporters of plastic pollution into lakes and oceans, with storm events playing a pivotal role. However, few studies investigate microplastic and macroplastic contamination and transport across a river basin, and how it varies with flow. Here, we sampled microplastic (less than 5 mm) and macroplastic (greater than 5 mm) from four sites along an urban river in Ontario, Canada, during baseflow and stormflow. To contextualize their fate and transport through river reaches, we sampled macroplastic stored in the riparian zone, overhanging vegetation, floating in surface water and riverbed and sampled microplastic from the surface water, water column and sediment. At baseflow, most macroplastic was found in the riparian zone (ranging from 0.1 to 4.7 pieces per m2). During stormflow, concentrations (micro and macro) rise and fall with discharge. Moreover, the composition of microplastics in the water column shifts from fibre- to rubber-dominated during higher flows. The mobilization of denser (e.g. rubber) particles during flow is consistent with greater water velocities during storms. Finally, using our data and flow patterns from 2022 to 2023, we estimate that approximately 522 billion microplastic particles and 20 754 macroplastic items, equalling approximately 36 000 and 160 kg by mass, respectively, are transported to Lake Ontario annually. This article is part of the Theo Murphy meeting issue ‘Sedimentology of plastics: state of the art and future directions’. 
    more » « less
    Free, publicly-accessible full text available October 23, 2026